UFO中文网

 找回密码
 注册会员

QQ登录

只需一步,快速开始

快捷导航
搜索
查看: 1057|回复: 0

宇宙到底又多大 我们如何探测如此广阔的宇宙

[复制链接]
发表于 2016-4-24 01:28:02 | 显示全部楼层 |阅读模式
  在大爆炸后不久,宇宙曾经非常小,密度几乎无穷大——这真让人难以置信、也令人费解。不过,那是宇宙在138亿年前的模样。由于膨胀,那个曾经极小的宇宙如今已经变得巨大无比——而且每天仍在继续增大着。

       前后两代科幻电影都严重误导了公众对宇宙大小的看法。大家相信,科技的发展让我们无所不知。还有不少人相信,总有一天,我们能够在星系之间穿梭旅行。

       但是,科幻电影没能传达出来的东西还有很多。其中之一就是宇宙的广袤无垠。即使两个挨得最近的天体,它们的间距也大得惊人。对我们这些终其一生都在一颗行星上生活的生命体来说,银河系的大小、星系之间的距离都大得令人瞠目结舌。 我们不妨假设这样一个银河系模型,其中太阳就像一粒沙子那么大。这个模型可以帮助我们理解和感受一下那些距离尺度的巨大。 在这个模型中,银河系盘中的恒星(即沙粒)之间的距离约为6公里,而盘的直径是6万公里。现在,还有谁想在这些沙粒之间穿梭旅行吗?

       在过去几年,人们对宇宙大小的认识取得了巨大的进展。但就在不久以前,天文学们还对此不甚了解。甚至时至今日,我们仍然不知道宇宙的精确大小。


2712_1460387490_6461487.png
斯隆数字巡天的观测天区J1004+4112。(图片来源:ESA/NASA/K.SHARON(TEL AVIV UNIV.))/E. OFEK(CALTECH)



难以置信的膨胀


       大爆炸理论告诉我们,宇宙曾经非常小。我们知道,光或者信息的传播速度最快不超过光速(每秒30万公里)。我们确信宇宙的年龄是138亿年。我们还知道一光年约等于9万4千亿公里。在近140亿年里,初步估算,光应该沿径向传播了大约300亿光年的距离。
       但不要忘记,宇宙大爆炸与我们日常见到的爆炸不同。 随着爆炸而膨胀的不仅仅是物质,还有宇宙各处的时空。(这里说的时空是一个数学模型。它把时间和空间看做一个紧密交织的整体。)


       自从宇宙开始膨胀,随着时间的流逝,1厘米大小的“空间”膨胀成2厘米,并且如此不断膨胀下去。因此,如果把宇宙的膨胀也考虑进来,宇宙的半径就约为460多亿光年,直径大约是930亿光年。
       不过,这还需要一个重要的附带条件。这个直径指的是我们能够观测到的那部分宇宙的直径。广受宇宙学家支持的暴胀理论(如果它是正确的话)指出,可见的那部分宇宙与整个宇宙完全是两码事。一些宇宙学家提出,宇宙大的无边无际。不过,在此姑且把我们能够看到的那部分宇宙——也就是说那个直径约为930亿光年的宇宙——当做整个宇宙吧。



2712_1460387538_9564514.jpg
M74(图片来源:NASA / ESA / THE HUBBLE HERITAGE TEAM (STScl/AURA)-ESA/ HUBBLE COLLABORTION)


       彻底理解我们周围的环境、太阳系、太阳系在银河系中的位置、银河系本身等等,对于理解宇宙的演化至关重要。探索宇宙的大小也带来一大批有趣的天体,它们是天文学家的“量天尺”。
       人类测量宇宙大小的尝试可以一路追溯至古希腊的天文学家——萨摩斯岛的阿利斯塔克(Aristarchus,约公元前310年-公元前230年)。 他对日地和月地距离的计算修正了视差的概念。视差是一种利用邻近天体相对于远处背景天体的视位置移动来测量距离的技术。

       在阿利斯塔克之后,人们对宇宙大小的测量几乎没有什么进展,直到波兰天文学家尼古拉·哥白尼(公元1473年-公元1543年)提出日心说。在历史上最后一批最伟大的实测天文学家中,丹麦贵族第谷 ·布拉赫(公元1546年-公元1601年)首次用视差法测量彗星的距离。他对邻近天体的距离测量帮助人们建立起更接近现代的距离尺度观念。


从家门口开始


       在我们出发去探索无边无际的宇宙之前,不如暂停一下,先来感受一下太阳系(包括太阳和行星、物质遗迹、还有地球)的距离尺度。 为了帮助理解,不妨设想有这样一个缩小版太阳系:太阳位于其中一端,并用1厘米代表日地距离(简称AU)。为了更直观,你可以拿一张纸把它画下来。如果一张纸不够用,就再拿几张纸接着画,最后再把它们用胶带连接起来。好了,那就让我们开始吧。先在纸的一端写下太阳两个字,在离太阳1厘米远处标上地球,然后在离太阳0.4厘米和0.7厘米远分别标出水星和金星。在地球之外,距离太阳1.5厘米远处是火星,小行星带约在2.5厘米处,5厘米处是木星,9.5厘米处是土星,天王星和海王星分别位于19厘米和30厘米处。然后,我们在40厘米处写上冥王星。

       外太阳系区域里物质稀疏。距离太阳30至50厘米远处是柯伊伯带。你还可以在冥王星附近标出一些有意思的天体,比如在40厘米处写上冥王星的卫星妊神星,在45厘米处写上鸟神星,在60厘米处标上厄里斯 (这三位都是类似冥王星的矮行星)。最后在距离太阳50至100厘米处标上离散盘——那里零星散落着一些冰状小行星,可能因为其它行星的引力扰动而在怪异的轨道上运动。如此,我们就算大功告成了。 现在展现在你面前的是一幅1米宽的太阳系全景微缩图。

       以微缩图上的距离尺度为基准,再把图继续向外延伸100米就是奥托云的内边界——一个环绕太阳系边界的巨大物质晕,是2万亿颗彗星的家园。而奥托云的外边界则远在1000米之外。
       即使是宇航员,最远也只造访过月球,走过的距离才不过1个天文单位的389分之一而已。如果以微缩图的距离尺度衡量,那就是1厘米的389分之一——与人体内的红血球大小差不多。 如果把这个距离标在微缩图上,它将与地球几乎重叠在一起。

       而离我们最近的恒星比微缩图中的奥托云还要远得多。 银河系明亮的星盘中可能有4千亿颗恒星(盘直径约10万光年)里,还有1千亿个星系分散在浩瀚的宇宙中。
       下一次当你在星空下漫步时,抬头看看天空,细细思量一下宇宙的广袤无垠,你会不由得生出渺小和谦卑的感觉。


太阳系:冰与火的国度


举目四望宇宙总让人生出几分不安。在一个叫作太阳的中年矮恒星旁边,它的第三大岩体行星就是我们的栖身之所。太阳又身处于一个叫做银河系的棒旋星系中。而银河系不过是宇宙里几十亿个星系中的一个。但是,这个在宇宙中微不足道的小小星球却是我们已知唯一一处存在生命的地方。正是这一点点与众不同又让我们振作起来。太阳系里有生命赖以为生的家园——地球。不过,在未来几十年,我们或许还能找到其它有生命迹象的行星——可能是火星,也可能是木卫二。虽然太阳系可能并不是唯一一个有生命的地方,但要想在其它行星系统中找寻生命存在的确凿证据可谓难上加难。


       太阳系的总质量约为1.0013倍太阳质量。其中,位于小数点左边的数字是太阳自身的质量,右边的数字的73%是木星贡献的。剩余的部分则是太阳系内其它天体的质量总和,包括地球、其它行星、卫星、矮行星、大小各异的小行星和彗星,还有尘埃和冰晶。所以,就算把太阳系视为由木星和物质遗迹构成的系统也不算过分。


       照亮天空的恒星——太阳为整个太阳系带来光和热,同时也是太阳系的质量中心。它就像一个引力锚,把太阳系的所有天体都约束在一起。这样,在银河系中穿行的时候,整个系统也不至于分散。我们根据热量的分布,自然而然地把太阳系分成截然不同的两个区域:一个炽热、明亮又拥挤;另一个则冰冷、黑暗,但是幅员辽阔。下面就让我们看看它们是如何构成一个整体的。


2712_1460907210_2968140.jpg
2012年6月5日,美国宇航局的太阳动力学观测站(Solar Dynamics Observatory)捕捉到金星凌日的画面。250多年前,天文学家首次利用金星凌日测量太阳系的距离尺度。(图片来源:NASA/GSFC/SDO)

炽热区


       太阳发出的光需要8分多钟才能传播到地球。太阳和地球之间的平均距离是1亿4千960万公里。我们的太阳系之旅才刚刚开始,用日常的距离单位就已经很不方便了。因此,天文学家用“天文单位”(简称AU)来衡量距离。日地间的平均距离就定义为1个天文单位。

       距离太阳最近的是水星,其平均间距是日地距离的39%(即0.39个天文单位)。不过,水星绕太阳公转的轨道很古怪——在太阳系八大行星中,数它的轨道椭率最大。也就是说,它与太阳时近时远。当水星离太阳最远时(即轨道的远日点),它们的间距是0.467个天文单位;而离太阳最近时(即轨道近日点),间距只有0.308个天文单位。 如果你那时正好在水星上,你会发现太阳看起来比你在地球上看到的大3.2倍。

       那时,水星的表面温度也将达到400摄氏度,足以使铅融化。由于太阳的炙烤,再加上太阳发出的粒子流的轰击,水星的直径只有地球直径的38%,仅能够保留住微薄的大气。但有越来越多的证据表明,水星虽然位于太阳系炽热区域的最前端,其地表却有水冰。

      1992年,波多黎各阿雷西沃天文台的天文学家朝水星的极地发射雷达波。雷达回波显示,在几个终年不见阳光的环形山的底部有能够反射雷达波的沉积物。早在几十年前,天文学家就已经从理论上提出,撞击水星的彗星和小行星可能是水冰的提供者。在太阳永远照不到的极地环形山中,这些水冰可能保存至今。2012年,美国宇航局的信使号卫星(MESSENGER)证实了这些环形山确实有富含氢的土层,与存在水冰的判断一致。月球极地区地表下面的水冰可能也是这么来的。


2712_1460907254_5107117.jpg

美国宇航局的信使号卫星(MESSENGER)和地基雷达测绘发现,在水星地表,一些终年不见阳光的环形山中有高反射率的物质——可能是水冰。(图片来源:NASA/JHU APL/CIW)


       我们旅行的下一站是金星。它不仅个头与地球差不多(是后者的95%),其质量、密度、引力场和化学构成也与地球十分相似。尽管如此,它的地面平均温度却高达462摄氏度。虽然金星不像水星距离太阳那么近(金星与太阳的间距是0.72个天文单位),但在最糟糕的时候,金星甚至比水星还要炎热。这是因为金星有一层厚厚的大气,而且大气里几乎全部是吸热的二氧化碳气体。


2712_1460907277_6625671.jpg


前苏联的Verena卫星至今保持着在金星上工作时间最长的纪录——2小时零7分。从它传回的照片中,我们可以看到四周散布着类似玄武岩的岩石。在照片的底部,我们还可以看到卫星本体的一部分。(图片来源:NASA HISTORY OFFICE)


       此外,金星的大气压是地球海平面大气压的92倍,相当于我们在海下1000米处感受到的压力。这更加使得金星不那么友好。环境如此恶劣,也无怪乎登陆金星的探测器最多只能坚持2个多小时就报废了。地基和空间探测器借助雷达绘图向我们展示了金星的奇特地貌。它是除地球以外,太阳系里唯一一个已知有活火山的行星。2015年,欧洲空间局的“金星快车”(Venus Express)探测器绘制了金星的地表热分布图。科学家们发现,沿Ganiki Chasma断裂带分布着好几个830摄氏度的高温区域,呈现出的地貌特征与地球上的火山十分相似。他们还观测到这些区域的温度会间歇性地突然升高,然后又降低,可能是火山正在喷发的缘故。


2712_1460907313_7371826.png
最近,天文学家在金星表面发现了一些在短时间内迅速升温,随后又再度降温的区域。最有可能的解释是那里有火山喷发。(图片来源:E. SHALYGIN, ET AL. (2015))

宜居区


       我们接下来要造访的就是地球——我们甜美的家园,也是太阳系里唯一一个地表有水流动的行星。我们知道,对生命来说,水不可或缺。天文学家用这个概念定义一颗恒星的“宜居区”——即行星上可能有液态水的轨道距离,以此证认可能存在我们熟知的生命形态的系外行星。虽然这个定义尚有争议(或许有些生命体在除了水以外的其它液体中也能存活;或者生命体可以在地表之下生活),但它却是一个出发点。保守估计,太阳系的宜居区范围是0.99至1.69个天文单位。如果更乐观一点,我们可以把这个范围扩大到0.75至1.84个天文单位。不过,无论采用哪一个范围,干旱的金星都不在宜居区内,火星却置身其中,而且一般认为后者在很久以前要比现在更温暖,也更潮湿。


2712_1460907340_7925720.jpg
这是DSCOVR眼中的地球。DSCOVR是一个由美国宇航局、美国空军、美国国家海洋和大气管理局共同参与的合作研究项目,负责实时监测太阳风。这张照片是远在一百万公里之外的DSCOVR送给我们的惊喜。(图片来源:NASA)


火星与太阳的距离为1.5个天文单位。它一直被视为太阳系里最有可能存在生命的行星。但它的个头只有地球的一半大小,其表面引力也只及后者的38%,因此,这颗红色的行星无力支撑厚重的大气,而后者能够帮助保留地表的液态水。在头十亿年里,火星的上层大气慢慢消散于太空中,偶而造访的小行星更是把火星大气的大部分气体都给赶跑了。当大气变得足够稀薄,火星冷却下来,地表的水冻结成我们今天见到的冰川和冰盖。如今,火星的平均大气压只有地球海平面平均大气压的0.6%。在火星的冬季,极地的温度可以降至零下126摄氏度。在如此寒冷的环境中,大气中近30%的二氧化碳气体凝结成雪落到地面,极地的地表因此覆盖着一层干冰。尽管只有南极有永久性干冰盖,但两极的层状沉积物中都有水冰。多亏了探测器的测绘,我们掌握了火星上水冰的最低库存量。如果这些冰融化,火星表面(假设地表光滑)将被21米深的水所覆盖。根据近期的研究结果,在43亿年前,火星上的水量可能比北冰洋还要大。如果这些水覆盖整个火星的话,将比今天极地水冰融化形成的汪洋还要深6.5米。

2712_1460907360_9349365.jpg
在火星的Deuteronilus Mensae山区,台地的底部呈现出一些奇怪的纹理。天文学家认为,这可能是隐藏在尘土和岩石下面的水冰迅速融化形成的。(图片来源:ESA/DLR/FU BERLIN (G. NEUKUM))


      有朝一日,火星可能会被太阳吞噬。太阳的光度正在逐渐增加,宜居区也随之不断外移。大约10亿年后,地球将置身于宜居区内边界之外,难逃被太阳烈焰炙烤的噩运。不过,当太阳演化至红巨星阶段时,火星将会享受几十亿年的舒适时光。对火星来说,夏天到了——虽然大部分的水都已消散在太空中,却是它最舒适、宜居的时候。



岩石块



       接下来是小行星带。与海王星外面的柯伊伯带一样,它也是岩体和冰状物质遗迹盘的残骸。而太阳系的物质遗迹盘正是孕育行星的地方。与好莱坞电影里描述的情况相反,小行星带里物质稀疏。它的总质量还不及月球质量的5%,而且其中的三分之一全都集于谷神星一身。谷神星是小行星带里最大的天体,也是那里唯一的一颗矮行星。紧随其后的是灶神星、智神星和健神星,这三者加起来一共占了小行星带质量的一半。


2712_1460907387_6543884.jpg
美国宇航局的曙光号(Dawn)探测器在矮行星谷神星表面发现了一些亮斑。这些斑点可能是盐或者水冰。自发现以来,它们一直是令天文学家着迷的研究对象。(图片来源:NASA/JPL-CALTEC/UCLAMPS/DLR/IDA)

       小行星带始于2.06个天文单位。木星每绕太阳公转一周,小行星带里的天体就转四周。天文学家把这个比例称为4:1轨道共振关系。只要小行星的轨道周期是木星轨道周期的整数倍,巨大的木星就能轻而易举地干扰这些小石块,迅速(以天文时间尺度来说)地改变它原来的轨道。2:1共振关系——当木星公转一周时,小行星公转两周——标定了小行星带的外边界(位于3.27个天文单位)。虽然小行星带是太阳系里小行星最密集的区域,但还有不少小行星流浪在外,这都是木星的“功劳”。在过去十年里,约有十几颗小行星因其独特的行为吸引了天文学家的注意,这说明我们对这个“岩石带”还缺乏了解。



围墙之外


       彗星的轨道椭率很大。当它们沿着轨道朝太阳飞奔而来时,通常只有在进入3个天文单位以内时,天文学家才开始看到它们日渐增强的活动。在这个距离上,彗星表面的水冰开始快速升华,直接变成气体,甚至喷出能够反射太阳光的尘埃流。因此,用它来划分太阳系内侧的温暖区与外侧的冰冷区很合适。

       从这个距离处再往外走,行星个个都是大块头,其质量、密度和化学构成也与内太阳系的行星很不相同。由于太阳系内侧温度较高,内太阳系行星失去了较多的挥发性物质,所以,它们是由岩石和金属构成的,而外太阳系的巨行星们则主要由氢——最轻的元素构成。位于5.2个天文单位处的木星既是小行星带的幕后主宰,也是太阳系成员中质量最大的。它的质量是地球质量的318倍,直径是后者的11倍。接近两倍距离远处(9.6个天文单位)的是土星。它的质量是地球质量的95倍,直径是后者的9.5倍。

       氢占了这两颗行星的体积的90%以上。自几十亿年前形成至今,它们一直在自身引力的作用下收缩、冷却。因此,它们散发出的热量比从太阳那里吸收的还要多。两颗行星的大气层基本上是无底的,逐渐从气态过渡到液态,甚至随着深度的增加,还出现了导电的液态氢。它们的内部是否有类似地球大小的固态核,与它们的形成过程有关。美国宇航局的朱诺号(Juno)木星探测器预计在2016年7月飞抵木星。届时,它将精准测量木星的引力场,确定其内是否有固态核。

       更远处的一对巨行星性质比较相似。它们分别是位于19个天文单位处的天王星和30个天文单位远的海王星。两者的大气层主要由氢构成,质量略小,只占其总质量的20%。它们的总质量分别是地球质量的15和17倍。但它们的组成物质大部分都是重元素——可能有碳、氧、氮和硫。科学家们认为这些元素是行星在吸积冰状物质遗迹时收集起来的,所以,他们有时也把它们叫做“冰巨星”。两个行星的个头约比地球大四倍。



结冰区


2712_1460907411_5332031.jpg
环绕着绘架座β星的圆盘类似于太阳系的柯伊伯带。那里聚集着太阳系诞生时遗留下来的灰尘和物质遗迹。(图片来源:NASA/ESA/D. GOLIMOWSKI AND H. FORD (JHU)/D. ARDILA (IPAC)/J. KRIST (JPL)/M. CLAMPIN (GSFC)/G. ILLINGWORTH (UCO/LICK)/ACS SCIENCE TEAM)



       柯伊伯带位于30至50个天文单位处,外形酷似甜甜圈。它之所以是这么个形状,海王星功不可没。事实上,天文学家认为,海王星最大的卫星——海卫一就是一个被捕获的柯伊伯带天体(Kuiper Belt Object,简称KBO)。与它的岩体同类——位于火星和木星之间的小行星带一样,柯伊伯带也是太阳系巨大的物质遗迹盘的残骸。在科伊伯带内,轨道共振关系可以保护带内天体免遭海王星的干扰。位于39个天文单位处的冥王星是柯伊伯带里最明亮的天体。它与海王星结成2:3的轨道共振关系,即当冥王星绕太阳转两圈时,海王星已经转了三圈。此外,还有其它共振关系构成稳定的组合。凡是共振关系不受青睐的KBO将被扫地出门,并在海王星的干扰下,向内或者向外运动到倾斜角更大、椭率更高的轨道上去。恩克彗星(2P/Encke)和丘留莫夫-格拉西缅科彗星(67P/Churyumov-Gerasimenko)——欧洲空间局“罗塞塔”(Rosetta)卫星的观测对象——可能就是被踢出来的KBO碎块,并在与木星发生多次相互作用后,被后者牢牢地控制着。


2712_1460907442_8452148.jpg

海王星最大的卫星——海卫一可能是一个被捕获的柯伊伯带天体。上图展现了探测器看到的景象,蓝色的海王星出现在背景中。海卫一表面不仅有冰火山,还有风吹过粗糙地表的氮霜所留下的条纹痕迹。(图片来源:NASA/JPL/USGS)


2712_1460907466_2711792.jpg
欧洲空间局的“罗塞塔”(Rosetta)探测器正在仔细研究类似丘留莫夫-格拉西缅科彗星(67P/Churyumov-Gerasimenko)这样的天体。它们可能受到木星或者另一颗大质量行星的引力拉扯,才跑到现在这个极端的轨道上运动。(图片来源:ESA/ROSETTA/NAVCAM)


       现在,美国宇航局的新视野号(New Horizons)探测器已经飞过冥王星。科学家们希望它在穿越柯伊伯带、飞出太阳系时,收集更多KBO的细节信息。美国宇航局的旅行者1号(Voyager 1)飞船目前位于132个天文单位处,从某种意义上讲,它已经完成了这项工作。既然它已经离开了日球层顶——太阳风(带电粒子流)受到星际介质的阻碍而形成的磁场气泡,那么它现在探测到的粒子绝大多数都来自于星际空间。从旅行者1号所在的位置看,太阳就是一个小小的光点,其亮度比在地球上看到的满月还要明亮24倍。然而,旅行者1号还要不停地走上几千年,才能走到太阳系最大的结构体面前。


2712_1460907504_973206.jpg
新视野号(New Horizons)探测器已在2015年7月飞过冥王星。人类如今已经探索过太阳系的每一个行星了。上图展示了冥王星和它的卫星——冥卫一。两者的大小和间距都已按比例缩放过了。(图片来源:NASA/JHUAPL/SWRI)


       那就是奥托云,约有1万亿颗彗星生活在这个以太阳为中心的球壳形区域中。奥托云从5000个天文单位一直延伸到10万个天文单位远——即1.6光年,是我们与比邻星(距离我们最近的恒星)距离的40%。天文学家认为奥托云形成于太阳系早期,当时离太阳较近的冰状物都被行星甩到了外太阳系。如今,它们需要花3千万年才能绕太阳转一周。不过,太阳对它们的引力束缚非常微弱,其它作用力——例如银河系不规则的物质分布形成的引力场、路过的恒星和大质量分子云——对它们都有强烈的影响。这些拉扯最终改变了彗星的轨道,使它们直奔着太阳飞去。对它们来说,自打被踢到外太阳系以来,这还是头一次。这些具有“新运动特征”的彗星在椭率极高、倾角各异的轨道上运动。行星的引力能把它们转变为短周期彗星。天文学家认为,著名的哈雷彗星就是其中一例。


       在奥托云的边缘,彗星只要受到一点点拉扯就能逃到星际空间中去,绝不会比它们飞向内太阳系更困难。出逃的彗星可能会绕着另一颗恒星旋转。也许有一天,我们还能遇见从另一个行星系统的奥托云中跑出来的彗星。天文学家心里清楚,这种事虽然截至目前还从未发生过,但一定有可能发生。


您需要登录后才可以回帖 登录 | 注册会员

本版积分规则


快速回复 返回顶部 返回列表